Refine Your Search

Topic

Author

Search Results

Technical Paper

On the Synergism of the Driver Air Bag and the 3-Point Belt in Frontal Collisions

1995-11-01
952700
The number of passenger vehicles with combined 3-point belt/driver air bag restraint systems is steadily increasing. To investigate the effectiveness of this restraint combination, 48 kph frontal collisions were performed with human cadavers. Each cadaver's thorax was instrumented with a 12-accelerometer array and two chest bands. The results show, that by using a combined standard 3-point belt (6% elongation)/driver air bag, the thoracic injury pattern remained located under the shoulder belt. The same observation was found when belts with 16% elongation were used in combination with the driver air bag. Chest contours derived from the chest bands showed high local compression and deformation of the chest along the shoulder belt path, and suggest the mechanism for the thoracic injuries.
Technical Paper

Human Factors Evaluation of Existing Side Collision Avoidance System Driver Interfaces

1995-11-01
952659
This paper describes the assessment of driver interfaces of a type of electronics-based collision avoidance systems that has been recently developed to assist drivers of vehicles in avoiding certain types of collisions. The electronics-based crash avoidance systems studied were those which detect the presence of objects located on the left and/or right sides of the vehicle, called Side Collision Avoidance Systems, or SCAS. As many SCAS as could be obtained, including several pre-production prototypes, were acquired and tested. The testing focused on measuring sensor performance and assessing the qualities of the driver interfaces. This paper presents only the results of the driver interface assessments. The sensor performance data are presented in the NHTSA report “Development of Performance Specifications for Collision Avoidance Systems for Lane Changing, Merging, and Backing - Task 3 - Test of Existing Hardware Systems” [1].
Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

1996-02-01
960454
The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

Improving Occupant Protection Systems in Frontal Crashes

1996-02-01
960665
In the United States, air bags will be required in all passenger cars and light trucks under Federal Motor Vehicle Safety Standard (FMVSS) No. 208, Occupant Crash Protection. Even after full implementation of driver and passenger air bags as required by FMVSS No. 208, frontal impacts will still account for up to 8,000 fatalities and 120,000 moderate to critical injuries (i.e., injuries of AIS ≥ 2) [1]. The National Highway Traffic Safety Administration (NHTSA) has an ongoing research program to address these fatalities and injuries and provide a basis for the possible future upgrade of FMVSS No. 208. This effort includes developing supplementary test procedures for the evaluation of occupant injury in higher severity crashes, developing improved injury criteria including criteria for assessing injuries to additional body regions, and evaluating the injuries associated with occupant size [2, 3 and 4].
Technical Paper

RAID - An Investigative Tool to Study Air Bag/Upper Extremity Interactions

1997-02-24
970399
A study of frontal collisions using the NASS data base showed that there were four times as many arm injuries to belt restrained drivers who had an air bag deploy than for the drivers who were simply belted. By far, the distal forearm/hand was the most commonly injured region. Hard copy review identified two modes of arm injury related to the deploying air bag: 1) The arm is directly contacted by the air bag module and/or flap cover, and 2) The arm is flung away and contacts an interior car surface. Based on the field studies, a mechanical device called the Research Arm Injury Device (RAID) was fabricated to assess the aggressivity of air bags from different manufacturers. Results from static air bag deployment tests with the RAID suggested that the RAID was able to clearly distinguish between the aggressive and non-aggressive air bags. Maximum moments ranging between 100 Nm and 650 Nm, and hand fling velocity ranging between 30 and 120 km/h were measured on the RAID in these tests.
Technical Paper

Test Planning, Analysis, and Evaluation System (Test PAES): A Data Archiving Tool for Engineers and Scientists

1997-02-24
970453
As Intelligent Transportation Systems (ITS) become more prevalent, the need to archive data from field tests becomes more critical. These data can guide the design of future systems, provide an information conduit among the many developers of ITS, enable comparisons across locations and time, and support development of theoretical models of driver behavior. The National Highway Traffic Safety Administration (NHTSA) is interested in such an archive. While a design for an ITS data archive has not yet been developed, NHTSA has supported the enhancement of the Test Planning, Analysis, and Evaluation System (Test PAES), originally developed by Calspan SRL Corporation for the U. S. Air Force Armstrong Laboratory, for possible use in such an archive. On a single screen, Test PAES enables engineering unit data, audio, and video, as well as a vehicle animation, to be time synchronized, displayed simultaneously, and operated with a single control.
Technical Paper

Hybrid III Dummy Instrumentation and Assessment of Arm Injuries During Air Bag Deployment

1996-11-01
962417
Assessment of potential forearm fracture due to deployment of driver air bags is examined through a series of static air bag deployments with a specially instrumented Hybrid III dummy. The objective of the study was to determine the feasibility of measuring accelerations and bending moments on the Hybrid III dummy forearm as a potential injury index for arm fracture. Study of the National Accident Sampling System data has shown that in isolated circumstances, deployment of an air bag while the driver is making a turn can lead to fractures of the lower arm. To examine this phenomenon, the Hybrid III dummy was instrumented with accelerometers and strain gages to allow measurement of the accelerations and moments on the right arm. The arm was oriented over the steering wheel towards the eleven o'clock position during deployment of the air bag. Accelerations were measured on the arm at the wrist, elbow, and shoulder. Moments in two axes were measured at two locations below the elbow.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Comparative Studies of Neck Injuries of Car Occupants in Frontal Collisions in the United States and in the Federal Republic of Germany

1981-10-01
811030
Parallel and coordinated accident studies were conducted in the United States and in the Federal Republic of Germany to determine the extent, the level, and the comparability of neck injuries in automotive accidents as reported in the National Crash Severity Study (NCSS), and the Association of German Automobile Insurers (HUK-Verband) files. To determine the comparability of the two data sets, three primary evaluation criteria were used: 1) the distribution of overall injuries by AIS level by various occupant parameters, 2) the risk of occupant AIS injury vs. delta V, and 3) the distribution of neck injuries by AIS for restrained vs unrestrained occupants. Frequencies and severities of neck injuries in car accidents were compared in parallel layouts between the two data sets in frontal, side and rear impact modes. In further breakdown the frontal impact file was separated into driver/passenger and male/female categories.
Technical Paper

Determining the Effects of Brake Degradation

1973-02-01
730190
This paper presents an approach for evaluating the effects of brake system component degradation on vehicle braking performance. The approach involves the use of an inertial brake dynamometer, vehicle computer simulation, and vehicle test. The approach, procedures, and results of the study of the effects of worn friction materials, worn discs and drums, and contaminated brakes are presented.
Technical Paper

Automotive Recorder Research - A Summary of Accident Data and Test Results

1974-02-01
740566
The NHTSA has developed automotive recorders which can measure crash triaxial acceleration/time histories during vehicle collisions. From these acceleration histories (recorded on a magnetic disc), velocity/time histories and velocity change during impact are derived to provide measures of vehicle crash severity. The purpose of developing these recorders is to provide accurate and quantitative relationships of vehicle crash severity with occupant fatalities and serious injuries from real-world accidents. To date, a total of 1200 disc recorders has been produced, approximately 1050 recorders have been installed in fleet vehicles, and 23 accident records have been analyzed. This paper has been prepared to present the progress made in the Disc Recorder Pilot Project as of March 31, 1974. Recorder data from accidents involving vehicles equipped with disc recorders will be discussed and compared with associated reports by accident investigators.
Technical Paper

Subcompact Vehicle Energy-Absorbing Steering Assembly Evaluation

1978-02-01
780899
This paper describes the results of a 2 year study into the field accident performances of two basic designs of energy-absorbing steering assemblies. The two basic designs are the axial-collapse type of steering column used in conjunction with a shear capsule and the self-aligning energy-absorbing steering wheel mounted on a nonstroking column. The study identifies major injury causation factors for these two types of steering assemblies. The analysis was performed on 161 accident cases selected for unrestrained drivers in frontal accidents in two vehicle types.
Technical Paper

Where Have We Been - Where Are We Going?

1979-02-01
790011
This paper reviews some of the progress that has been made in recent years in the transportation field by behavioral scientists and human factors engineers. The major areas covered are public transportation systems, railroad systems, highway systems, and personal transportation systems. The report suggests what future problems may be encountered in these areas that will need the attention of human factors specialists.
Technical Paper

Improving Safety Belt Acceptability to the Consumer

1979-02-01
790681
Currently, consumers must contend with many comfort and convenience problems whenever they use a manually operated (“active”) safety belt. Such problems are prevalent not only in older models but in new cars as well. Beginning with 1982 models, most auto manufacturers plan to install automatic safety belts to meet new Federal requirements for passive occupant protection. To reduce the likelihood of consumer rejection and non-use of automatic as well as manual belt systems, research has been conducted to develop performance specifications for improved comfort and convenience. This paper discusses specifications and criteria to improve the safety belts by reducing comfort and convenience variables for both manual and automatic systems.
Technical Paper

Comparison of Pedestrian Kinematics and Injuries in Staged Impact Tests with Cadavers and Mathematical 2D Simulations

1983-02-01
830186
The paper presents a comparison of kinematic responses between the MVMA-2D and the MAC-DAN pedestrian models and pedestrian cadaver kinematics observed in staged car/pedestrian impact tests. The paper also discusses the injuries experienced in the cadaver tests. Seven cadaver specimens in the standing posture were impacted at 25 mph by two different cars: one having a steel bumper and the other having a plastic bumper. The MVMA-2D and MAC-DAN mathematical pedestrian models were employed to simulate pedestrian impacts at 25 mph by a vehicle with a stylized geometry that is similar to the vehicles used in cadaver tests. Comparison of the simulations and the cadaver tests show that both models require further refinement to be able to more accurately simulate the kinematics of the lower legs during impacts with the vehicle bumper.
Technical Paper

Light Vehicle Frontal Impact Protection

1982-02-01
820243
This paper addresses the protection of occupants in light vehicles. It presents data and techniques for identifying and measuring potential crashworthiness improvements that would mitigate injuries to occupants striking frontal interior components such as the steering wheel, instrument panel and windshield. Both restrained and unrestrained occupants can be injured by frontal interior components in crashes. The focus of this paper is on the unrestrained occupant. However, performance criteria and associated countermeasures will have to be developed considering the differences in the mechanisms of injury to both the restrained and unrestrained occupants. Work on the restrained occupant and the similarities and differences between both conditions remains to be considered. The paper presents information on the magnitude and types of injuries received from frontal interior components and on how the performance of these components and the vehicle structure affect the resultant injuries.
Technical Paper

Light Vehicle Occupant Protection - Top and Rear Structures and Interiors

1982-02-01
820244
This paper addresses serious, occupant crash injuries from: (a) head impacts with A-pillars, roof headers, and roof side rails, and (b) occupant entrapment and roof intrusion in rollover accidents. It also discusses two less frequent causes of injury: (a) fires in crashes, and (b) occupant ejection through the roof and rear window or rear doors. The paper estimates the relative frequencies of these types of injuries, classified according to the body area injured and the vehicle interior component responsible for the injury. Data for these estimates is from the National Crash Severity Study augmented by the 1979 Fatal Accident Reporting System data. Also, this paper addresses the potential for reducing the severity of these injuries in light motor vehicles, with particular emphasis on AIS 3 and more serious injuries.
Technical Paper

A Search for Priorities in Crash Protection

1982-02-01
820242
This paper presents the methodology and results of an analysis of the available information on motor vehicle safety which could be used to provide a basis for establishing priorities for future Government and private sector efforts directed at enhanced crash protection. The work was stimulated by several factors: (1) 5 years have elapsed since the National Highway Traffic Safety Administration (NHTSA) published a plan for motor vehicle safety research and development, (2) motor vehicles have changed substantially over the past several years, (3) the quantity and quality of accident data and vehicle crash performance information have increased dramatically over the past 5 years, and (4) Government policies and the amount of Government and private sector resources available for future efforts are changing.
Technical Paper

1974 Accident Experience with Air Cushion Restraint Systems

1975-02-01
750190
An air cushion restraint system has been available to the public on certain model passenger cars since January 1974. In response to this opportunity to obtain field experience, the National Highway Traffic Safety Administration has established a nationwide reporting network and investigative capability for accidents involving air-bag equipped cars. The reporting criteria for accidents require that the car be towed as a result of the accident, or that a front-seat occupant was injured, or that bag deployment occurred. The principal objective is to obtain the injury-reducing effectiveness of this restraint system in the total accident environment. This environment encompasses “towaway” accidents resulting in bag deployment and non-deployment. Definitive results are expected at the conclusion of the study. This paper summarizes the experience during the first year of the program, during which time the rate of accident occurrence was far less than originally expected.
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

1986-02-24
860654
The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
X